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ABSTRACT
Multi-subject analysis of functional Magnetic Resonance Imag-

ing (fMRI) data relies on within-subject studies, which are usually
conducted using a massively univariate approach. In this paper, we
investigate the impact of a novel within-subject analysis on group
studies. Our approach is based on the use of spatial mixture mod-
els (SMM) in a joint detection-estimation framework (JDE) [1]. This
setting allows us to characterise the hemodynamic filter at a regional
scale and therefore to account for its spatial variability. As the subject-
specific BOLD effects enter as input parameters in the computation
of group statistics, we then compare two kinds of Random effect
analyses (RFX). The first one takes the estimated BOLD effects
computed by SPM1 as inputs while the second one considers the
results of our JDE scheme. We finally show on a real dataset of 15
subjects that brain activations appear more spatially resolved using
SMM instead of SPM and that a better sensitivity is achieved. More-
over, the JDE framework allows to assess the regional inter-subject
variability of the brain dynamics.

Index Terms— RFX analysis, detection-estimation, fMRI.

1. INTRODUCTION

The objective of fMRI group analysis is to extract a good represen-
tation of the relationship between brain structure and function across
subjects. It usually consists in averaging responses after a normaliza-
tion procedure that ensures the definition of a common anatomical
space for all scanned subjects. Generally, this averaging procedure
is implemented using the standard Student-t statistic, and relies on
the assumption that the activity is normally distributed across sub-
jects. The fMRI data acquired for each subject during the same cog-
nitive experiment are processed individually to produce an image of
estimated BOLD effects relative to a given contrast of experimental
conditions. These BOLD effects are usually estimated in the General
Linear Model (GLM) framework from the individual data. Classi-
cal GLM-based approaches consider a known shape for the impulse
response of the neurovascular system (the Hemodynamic Response
Function) and assume overall that it is constant throughout the brain.

Recently, a Bayesian detection-estimation approach has been
proposed in [2]. This method jointly detects which parts of the brain
are activated by a given stimulus type and estimates the underlying
dynamics of activations. Further extended in [1], spatial mixture
models (SMM) have been introduced to model spatial correlation of
fMRI data instead of smoothing them.

This paper is structured as follows. Classical GLM-based in-
ference (SPM) at the subject level is exposed in Section 2 with a

1http://www.fil.ion.ucl.ac.uk/spm

special emphasis on how flexible modeling of the BOLD response is
achievable in this framework. Our solution presented in Section 3.
It relies on a prior parcellation of fMRI data, which is nothing but a
clustering procedure that preserves connexity and functional homo-
geneity. Then, at the parcel level the JDE framework allows us to
specify and estimate a specific BOLD model. Section 4 is devoted
to group studies in fMRI. The principles of random effect analy-
sis are reminded and a special attention is paid to the permutation
test approach. Results obtained at the group level on a quick map-
ping fMRI experiment are discussed in the fifth and conclusions are
drawn in final section.

2. WITHIN-SUBJECT ANALYSIS IN fMRI

2.1. Standard GLM-based approach

Within-subject analysis in fMRI is usually addressed using a hypothesis-
driven approach that postulates a model of the HRF response and
enable local inference at the voxel level. Such methods take place in
the General Linear Model (GLM) framework. GLM-based methods
correspond to hypothesis-driven approaches that postulate a canoni-
cal model for the HRF hc and enable voxelwise inference. SPM. In
its simplest form, the ensuing model of the BOLD response is spa-
tially invariant and remains constant across the brain. Hence, each
column or regressor in the design matrix X derives from the con-
volution of hc with the stimulation signal xm associated to the mth

stimulus type. The GLM therefore reads:

[y1, . . . , yJ ] = X [β1, . . . , βJ ] + [b1, . . . , bJ ] (1)

where yj is the fMRI time series measured in voxel Vj at times
(tn)n=1:N and βj ∈ �M defines the vector of BOLD effects in
Vj for all stimulus type m = 1 : M . Noise bj is usually modelled
as a first-order autoregressive (i.e., AR(1)) process in order to ac-
count for the spatially-varying temporal correlation of fMRI data [3]:
bj,tn = ρj bj,tn−1 + εj,tn , ∀j, t, with εj ∼ N (0N , σ2

εj
IN ), where

0N is a null vector of length N , and IN stands for the identity ma-

trix of size N . Then, the estimated BOLD magnitudes bβj in Vj are
computed in the maximum likelihood sense by:

bβj = arg min
β∈�M

‖yj −Xβj‖2
bσ−2

εj
bΛj

,

where bσ−2
εj

bΛj defines the inverse of the estimated autocorrelation
matrix of bj ; see for instance [4] for details about the identifica-
tion of the noise structure. Later, extensions that incorporate prior
information on the BOLD effects (βj)j=1:J have been developed

in the Bayesian framework [5]. In such cases, vectors (bβj)j=1:J
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are computed using more computationally demanding strategies [5].
However, all these GLM-based contributions consider a unique and
global model of the HRF shape while intra-individual differences in
its characteristics have been exhibited between cortical areas [6].

2.2. Flexible GLM models

Although smaller than inter-individual fluctuations, the within-subject
regional variability of the HRF is large enough to be regarded with
care. GLM can actually be refined to allow variations of the canoni-
cal HRF hc at the voxel level through additional regressors: hc can
be supplemented with its first and second derivatives ([hc |h′c |h′′c ])
to model eg. differences in time-to-peak. Although powerful and
elegant, flexibility is achievable at the expense of fewer effective
degrees of freedom and decreased sensitivity in any subsequent sta-
tistical test. Importantly, in a GLM involving several regressors per
condition, the BOLD effect becomes multivariate (βm

j ∈ �P ) and
the Student-t statistic can no longer be used to infer on differences
βm

j −βn
j between the mth and nth stimulus types. Rather, an unsigned

Fisher statistic has to be computed, making direct interpretation of
activation maps more difficult.

3. BEYOND THE GLM TO WITHIN-SUBJECT ANALYSIS

3.1. Multi-subject parcellation

Here, we claim the necessity of a spatially varying HRF model to
keep a single regressor per condition, and thus enable direct statisti-

cal comparison (bβm
j − bβn

j ) feasible. The JDE framework proposed
in [1, 2] allows us to introduce a spatially adaptive GLM in which
a local estimation of h is performed. To conduct the analysis effi-
ciently, HRF estimation is performed at a regional scale coarser than
the voxel level. To define this scale, the functional brain mask is di-
vided in K functionally homogeneous parcels using the parcellation
technique proposed in [7]. This algorithm relies on the minimisation
of a compound criterion reflecting both the spatial and functional
structures and hence the topology of the dataset. The spatial similar-
ity measure favours the closeness in the Talairach coordinates sys-
tem. The functional part of this criterion is computed on parameters
that characterise the functional properties of the voxels, for instance
the fMRI time series themselves.

The number of parcels K is set by hand. The larger the number
of parcels, the higher the degree of within-parcel homogeneity but
potentially the lower the signal-to-noise ratio (SNR). To objectively
choose an adequate number of parcels, Bayesian information crite-
rion (BIC) and cross validation techniques have been used in [8] on
an fMRI study of ten subjects. The authors have shown converging
evidence for K ≈ 500 for a whole brain analysis leading to typ-
ical parcel sizes around a few hundreds voxels. Importantly, since
the parcellation is derived at the group level, there is a one-to-one
correspondance of parcels across subjects, as shown in Fig. 1 .

3.2. Parcel-based modeling of the BOLD signal

Here, we use the parcel-based model of the BOLD signal introduced
in [1,2]. As shown in Fig. 2, this means that although the HRF shape
h is assumed constant within a parcel, the magnitude of activation
βm

j can vary in space and across stimulus types. Let P = (Vj)j=1:J

be the current parcel. Then, the generative BOLD model reads:

yj =
MX

m=1

βm
j Xmh + P �j + bj , ∀ j, Vj ∈ P. (2)

Fig. 1. Sagittal views of a color-coded multi-subject parcellation.

Left: Subject 1. Right: Subject 2.

Fig. 2. Regional model of the BOLD signal in the JDE framework.

The neural response levels am
j match with the BOLD effects βm

j .

Xm denotes the N × (D +1) binary matrix that codes the onsets of
the mth stimulus. Vector h ∈ �D+1 represents the unknown HRF
shape in P . The term P �j models a low-frequency trend to account
for physiological artifacts and noise bj ∼ N (0N , σ2

εj
Λ−1

j ) stands
for the above mentioned AR(1) process.

3.3. Spatial mixture modeling and Bayesian inference

The HRF shape h and the associated BOLD effects (βj)j=1:J are
jointly estimated in P . Since no parametric model is considered for
h, a smoothness constraint on the second order derivative is intro-
duced to regularize its estimation; see [2]. On the other hand, our
approach also aims at detecting which voxels in P elicit activations
in response to stimulation. To this end, prior mixture models are
introduced on (βm)m=1:M to segregate activating voxels from the
non-activating ones in a stimulus-specific manner (i.e., for each m).
In [1], it has been shown that SMMs allows us to recover clusters of
activation instead of isolated spots and hence to account for spatial
correlation in the activation detection process without smoothing the
data. As our approach stands in the Bayesian framework, other pri-
ors are formulated upon every other sought object in model (2). The
reader is referred to [1, 2] for their expressions. Finally, inference
is based upon the full posterior distribution p(h, (βj), (�j),Θ |�),
which is sampled using a Gibbs sampling scheme [1]. Posterior
mean (PM) estimates are therefore computed from these samples ac-
cording to: bxPM =

PL1
k=L0

x(k)/L, ∀x ∈ ˘
h, (βj),Θ

¯
where

L = L1 − L0 + 1 and L0 stands for the length of the burn-in
period. Note that this estimation process has to be repeated over
each parcel of each subject’s brain. Since the fMRI data are con-
sidered spatially independent across parcels, parallel implementa-
tion of the Gibbs sampler implies processing each parcel separately:
whole brain analysis is achievable in about 60 mn for N = 125 and
K = 500 and decreases with K. Our current implementation is in
Python allowing us to take advantage of a parallel computing sys-
tem available through the Seppo library combined with the Pyro
server. Computation time can be reduced further by using a larger
number of processes, for instance to 27 mn for height processes on
a dual core quadri processors Pentium IV (2.7 GHz).
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4. GROUP ANALYSIS

4.1. Classical parametric population-based inference

Assume S subjects are selected randomly in a population of inter-
est and submitted to the same fMRI experiment. As shown in pre-
vious sections, the two types of within-subject analyses produce,
in one particular voxel Vj of the standardized space (usually, the
MNI/Talairach space) and for each subject s, BOLD effect estimatesbβj,s. Comparison between experimental conditions is usually ad-

dressed through contrasts i.e., through signed differences bdm−n
j,s =

bβm
j,s − bβn

j,s of the BOLD effects relative to the mth and nth stimu-
lus types. For notational convenience, we will drop index j and the
contrast under study m−n in what follows. While the estimated dif-

ference bds generally differs from the true but unobserved effect ds,

assume for now perfect within-subject estimation so that bds = ds

for s = 1 : S. We thus are given a sample (d1, , . . . , dS) drawn
from an unknown probability density function (pdf) f(d) that de-
scribes the distribution of the effects in the population. Here, we
are concerned with inferences about a location parameter (mean,
median, mode, ...). Assume for instance we wish to test the null
hypothesis that the population mean is negative: H0 : μG =R

d f(d) dd ≤ 0 where G stands for the group. To that end, we may
use the classical one-sample t test and compute the t statistic:

t =
μ̂G

σ̂G/
√

S
, with : μ̂G =

P
s ds

S
, σ̂2

G =

P
s(ds − μ̂G)2

S − 1
(3)

Next, we accept the alternative H1: μG > 0, if the probability un-
der H0 of attaining the observed t value is lower than a given false
positive rate. If f(d) is Gaussian, this probability is well-known to
be obtained from the Student distribution with S−1 degrees of free-
dom. In this parametric context, the t statistic can be proved to be
optimally sensitive (technically, in the sense of the uniformly most
powerful unbiased test, see [9]).

4.2. Non-Gaussian populations

If normality is not tenable, however, the Student distribution is valid
only in the limit of large samples, and may thus lead to inexact con-
trol over the false positive rate in small samples. This problem can
be worked around using non-parametric calibration schemes such as
sign permutations [9], which allow exact inferences under a milder
assumption of symmetry regarding f(d). Although we recommend
permutation tests, they only provide an alternative strategy of thresh-
olding a given statistic and, as such, address a specificity issue.

The fact that the sampling pdf f(d) may not be normal also
raises a sensitivity issue as the t statistic may no longer yield optimal
power when normality does not hold. Without prior knowledge of
the shape of f(d), a reasonable default choice for the test statistic
is one that maintains good detection performance over a wide range
of pdfs. Such a statistic is robust, not quite in the classical sense of
being resistant to outliers, but in the looser sense of being resistant
to distributions that tend to produce outliers, such as heavy-tailed, or
multimodal distributions.

The sign statistic tsgn is the number of positive values in a sam-
ple (using the convention that zero counts half). If the observa-
tions are exact, tsgn provides an efficient test of the population me-
dian: under the null hypothesis that the median is zero, tsgn fol-
lows a binomial law BS, 1

2
whatever the shape of f . The Wilcoxon’s

signed rank (WSR) statistic is a classical alternative to the sign statis-
tic that works by sorting the absolute effects in ascending order,
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Fig. 3. BOLD effects estimates ( bdA.−V.
j )j in a given subject for the

A.−V. contrast. (a): SPM-based results obtained with the canoni-

cal HRF hc. (b): JDE-based results considering model (2). c: Com-

parison of HRF shapes in the mostly activated parcel P: hc and bhP
appear in red and , respectively.

then summing up the ranks multiplied by the corresponding effect’s

signs, yielding: tWSR =
PS

s=1 sgn( bds) rank(|bds|) It is meaning-
ful to interpret WSR statistic as a measure of symmetry about zero.
More specifically, if the observations are exact and if the popula-
tion median is zero, we easily prove that tWSR is S times the non-
parametric maximum likelihood estimate of the covariance φ(f) =
Cov

`
sgn(D), F+(|D|)´

where F+ is the cumulative distribution func-
tion of |D|, that is: F+(u) = F (u) − F (−u) for u ≥ 0. Clearly,
φ(f) = 0 if the effect’s sign and the effect’s absolute value are sta-
tistically independent, a situation that occurs if f is symmetric about
zero. In such cases, rejecting φ(f) = 0 implies that the (unique)
location parameter of f is different from zero. In the following, we
use the WSR statistic as already done in [10].

5. EXPERIMENTAL RESULTS

Real fMRI data were recorded in fifteen volunteers during an ex-
periment, which consisted of a single session of N = 125 scans
lasting TR = 2.4 s each. The main goal of this experiment was to
quickly map several brain functions such as motor, visual and audi-
tory responses, as well as higher cognitive functions like computa-
tion. Here, we only focus on the auditory and visual experimental
conditions and so on the auditory-visual contrast of interest ( refer-
enced as A.−V.).

5.1. Within-subject analyses

We compare the BOLD effect estimates for the two within-subject
analyses under study. Fig. 3 clearly emphasizes for the A.−V. con-
trast that the JDE method achieves a better sensitivity (bilateral acti-
vations) in comparison with GLM-based inference when processing

unsmoothed data. Indeed, the BOLD effects bdA.−V.
j have higher val-

ues in Fig. 3(b) and appear more enhanced. This is partly due to the
modeling of spatial correlation using SMM in the JDE framework.

As shown in Fig. 3(c)-[red line], notice that the HRF estimate bhP
computed in the mostly activating parcel deviates from the canoni-
cal shape depicted in Fig. 3(c)[green line].

5.2. Random effect analyses

To enforce the coherence of our group level comparison with actual
pipelines for fMRI data processing (SPM, FSL), the fMRI images
that enter in model (1) were spatially filtered using isotropic Gaus-
sian smoothing at 5mm. In the JDE formalism, we still consider
unsmoothed but normalized data to build the group parcellation as
described in Fig. 4. Note that both approaches will be available in
the next release of BrainVisa in April, 2008.

1265



Fig. 4. Pipelines associated to the two fMRI group analyses.

(a)

Axial Axial

(b)

(c)

Coronal Coronal

(d)

(e) (f)

Fig. 5. RFX anaylsis maps based on the WSR statistics in the slice

corresponding to the mostly activated cluster. Radiological conven-

tion: left is right. (a)-(c)-(e) and (b)-(d)-(f): results obtained using

the JDE and SPM analyses at the subject level, respectively.

Fig. 5 provides us with the WSR statistical maps, corrected for
multiple comparisons in the permutation testing framework. The
displayed slices match with the place of most significant activations.
Activation clusters appear larger in Fig. 5(b-d-f), i.e., using the GLM
based approach, as a direct consequence of smoothing. The statisti-
cal map derived at the group level from the JDE analyses seems to
have a lesser extent while being more significant at the cluster level
than the GLM counterpart in the right hemisphere (left side). More-
over, the JDE formalism allows us to detect a gain in sensitivity since
activations in Broca’s area can be seen in the front of Fig. 5(a), right
side. Table 1 confirms quantitatively these results and emphasizes
that GLM-based inference systematically reports clusters of larger
size (see col. 3). However, in terms of significance, the situation
appears more contrasted since cluster level p-value is lower in the
right hemisphere for JDE (top line in Table 1) in one cluster over
two and thus provides most significant activation. This might be a
consequence of the between-subject variability we observed in the
HRF estimate as reported in Fig. 6.

Table 1. Suprathreshold clusters summary for the WSR statistic.

Cluster level Cluster size Voxel level Peak coords.

pcorr (voxels) pcorr x y z

JDE
0.002 1151 1e− 06 8 30 26
0.003 876 0.0007 47 27 30

SPM
0.0022 1788 0.0001 5 29 28
0.0028 1680 0.0001 45 27 27
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Fig. 6. Subjects are color-coded: HRF estimates computed over the

parcel associated to the voxel of maximal WSR value.

6. CONCLUSION

In this paper, we have demonstrated that the statistics computed at
the group level are influenced by the type of within-subject fMRI
analysis. In particular, we have shown that the JDE formalism is
able to provide the neuroscientist with reliable RFX analysis results
that can be more sensitive than standard GLM-based inference while
avoiding spatial filtering of fMRI images. Finally, we have made the
between-subject variability of brain dynamics feasible using non-
parametric modeling of the BOLD signal.
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